Ocean circulation 

Oceanic circulation.  [pages 39-44]  [Chapter 2 key terms Gyres, Gulf stream, California current, North Atlantic drift, Labrador current, upwelling, thermocline, thermohalineflow, salinity, salt rejection, North Atlantic Deep Water, Antarctic Bottom Water, Mediterranean Outflow water, Antarctic Intermediate Water]

Oceanic Heat transport and global circulation Atmospheric Motion Ocean Circulation Study Guide and lecture link

1.  California current, Labrador current, Gulf stream, Peruvian Current Slide1.JPG (68876 bytes)
Clockwise ocean circulation (Gyres) in NH

Counter Clockwise in SH

Slide2.JPG (66165 bytes)  Slide10.JPG (73608 bytes)

Figure 2-21  and 2-27

Gulf Stream is a relatively narrow warm current bringing warm water Northward Slide3.JPG (67760 bytes)
Vertical profile of ocean temperature  (mixed layer 0-~100 meters,  Thermocline 100 to 1000 meters, and deep ocean greater than 1000 meters) Slide4.JPG (47364 bytes)  Figure 2-25VerticalProfile.JPG (46150 bytes)
Upwelling of cold nutrient rich water off the West Coast of US Slide5.JPG (42708 bytes)
Ekman Spiral.    Mean Ocean transport in top 100 meters is perpendicular to surface winds. Slide7.JPG (46864 bytes) Fig 2-22
Ekman Spiral and Upwelling.  As ocean transport moves coastal water from the coastline cold nutrient rich water upwells to replace the coastal waters. Slide8&9.JPG (66389 bytes) 2-27
Upwelling in the equatorial regions  Slide16.JPG (36042 bytes) Slide10.JPG (73608 bytes)

2-23, 2-27

North Atlantic Deep water formation drives the global conveyor belt of ocean circulation.

When North Atlantic surface waters become very cold and highly saline deep water formation is most intense and global ocean circulation is most intense.  Warm surface water or fresh surface water in the North Atlantic tend to weaken deep water formation and hence weakens global ocean circulation.

 

Slide11&12.JPG (149141 bytes)  2-24  Slide15.JPG (46702 bytes)
North Atlantic Deep Water, Antarctic Bottom Water, Mediterranean Outflow water, Antarctic Intermediate Water Slide13.JPG (33572 bytes)  2-26
Ocean productivity OceanProductivity.JPG (86707 bytes)
The image shows the difference in distributions of ocean net primary productivity between 1997-2002 and 1979-1986. OceanProductivityChange.JPG (77880 bytes)
Glacial Carbon Pump.  Cold nutrient rich water enhance photosynthesis and pull CO2 from atmosphere into the oceans.  Warmer climates would tend to do the opposite. GlacialCarbonPump.JPG (44161 bytes)  Figure 11-16
Wind blown dust is larger during glacial times.  This carries needed nutrients from land to oceans which enhances the bioproductivity of the oceans pulling even more CO2 from the atmosphere.

iron fertilization hypothesis (page 247)

FeFertilization.JPG (43604 bytes)  Figure Box 11-2